Saturday, September 14, 2024

Studiati in laboratorio i terremoti che generano tsunami: ecco perché si rompe il fondale oceanico

Svelare i possibili processi fisici che consentono a un terremoto di generare uno tsunami per sollevamento del fondale marino. È quanto si prefigge uno studio, firmato INGV, Università di Padova e Firenze, Royal Holloway University of London, Manchester e Durham University (Regno Unito), Tsukuba e Kyoto University (Giappone), pubblicato su Nature Geoscience

Esistono diversi tipi di tsunami, a volte generati dalla rottura di un piano di faglia, da collassi di apparati vulcanici o da grandi frane sottomarine innescate da terremoti. Uno studio condotto da un team di ricercatori dell’Istituto Nazionale di Geofisica e Vulcanologia (INGV), Università di Padova e Firenze, Royal Holloway University of LondonManchester e Durham University (Regno Unito), Tsukuba e Kyoto University (Giappone), tenta di svelare i processi fisici che consentono a un terremoto di generare uno tsunami per sollevamento del fondale marino. La ricerca Past seismic slip-to-the-trench recorded in Central America megathrust, è stata pubblicata su Nature Geoscience (https://www.nature.com/articles/s41561-017-0013-4).

I terremoti sono il risultato della propagazione di una rottura lungo una superficie che attraversa la crosta terrestre chiamata faglia. La propagazione della rottura consente ai blocchi di roccia a lato della faglia di spostarsi l’uno rispetto all’altro anche di decine di metri nel caso di terremoti eccezionalmente grandi (magnitudo nove). In genere, i terremoti che producono tsunami si distinguono da quelli che interessano la crosta continentale, come i recenti terremoti di Amatrice e Norcia del 2016, per avere una velocità di propagazione della rottura più lenta (1-2 km/s) rispetto agli altri terremoti (2-4 km/s), consentire grandi spostamenti dei blocchi di faglia vicino al fondale marino, e avere un epicentro situato non lontano dalla fossa oceanica.

Figura1: Scienziati a bordo del R/V Joides Resolution mentre descrivono i sedimenti recuperati al largo della Costa Rica durante la Exp. 334 – al centro Paola Vannucchi.
Figura1: Scienziati a bordo del R/V Joides Resolution mentre descrivono i sedimenti recuperati al largo della Costa Rica durante la Exp. 334 – al centro Paola Vannucchi.

“Fino a pochi anni fa”, spiega Paola Vannucchi, primo autore dell’articolo e ricercatrice della Royal Holloway of London, Regno Unito – Università di Firenze, “si riteneva che le rotture sismiche non fossero in grado di propagarsi attraverso i più superficiali e soffici sedimenti marini ricchi in argilla. Inoltre, non era stata presa in considerazione la presenza in questi sedimenti di strati non consolidati dallo spessore di decine fino a centinaia di metri composti da gusci calcarei di microrganismi marini. In generale, si riteneva che il coefficiente di attrito di questi materiali aumentasse con la velocità di scivolamento lungo una faglia arrestando la rottura prima che questa arrivasse a rompere il fondale marino”.

Lo studio ha, invece, evidenziato che la propagazione, durante grandi terremoti (magnitudo maggiore di sette), determina rotture sismiche lungo faglie dalla profondità dove nasce il terremoto (circa 15-35 km per questi terremoti) fino al fondale marino.

“Il grande terremoto di Tohoku (magnitudo 9.0) e conseguente tsunami che ha inondato la costa settentrionale dell’arcipelago Giapponese l’11 marzo del 2011 ha messo in discussione proprio questa interpretazione. Evidenze sismologiche, geofisiche e geologiche hanno mostrato che in questo terremoto la rottura si è propagata fino a rompere il fondale oceanico con conseguenze devastanti”, prosegue Vannucchi.

Figura 2. Il Laboratorio Alte Pressioni - Alte Temperature di Geofisica e Vulcanologia Sperimentali dell’INGV di Roma. In primo piano l’apparato sperimentale SHIVA
Figura 2. Il Laboratorio Alte Pressioni – Alte Temperature di Geofisica e Vulcanologia Sperimentali dell’INGV di Roma. In primo piano l’apparato sperimentale SHIVA

La rottura del fondale oceanico è associata all’innalzamento, anche di alcuni metri per grandi terremoti, del fondale e la conseguente energizzazione della colonna d’acqua marina sovrastante. Poiché in zona di fossa oceanica la colonna d’acqua è di diversi chilometri di altezza, il sollevamento del fondale in questi particolari ambienti oceanici comporta la generazione di imponenti e violentissime onde di tsunami, alte fino a 20-30 metri (un palazzo di dieci piani) quando queste si infrangono sulla costa, come nel caso del terremoto di Tohoku.

“La ricerca”aggiunge Giulio di Toro, ricercatore dell’Università di Padova associato all’INGV, “unisce dati da perforazione di fondali oceanici effettuati nel Pacifico in prossimità della fossa che costeggia il Costa Rica (America Centrale), da progetti Integrated Oceanic Discovery Programme (https://www.iodp.org/ ), da esperimenti condotti in Italia su sedimenti marini composti da argille e gusci di microrganismi marini campionati durante la perforazione”.

Gli esperimenti sono stati effettuati conl’apparato sperimentale SHIVA (Slow to HIgh Velocity Apparatus) che con i 300 kW (equivalente alla potenza dissipata da 100 appartamenti medi Italiani) è in grado di dissipare, in provini di roccia dalle dimensioni di un piccolo bicchiere del diametro di 50mm, il più potente simulatore di terremoti al mondo.

“SHIVA, progettato e installato nel 2009 presso il Laboratorio Alte Pressioni – Alte Temperature di Geofisica e Vulcanologia Sperimentali  dell’INGV di Roma, è una strumentazione in grado di comprendere la meccanica dei terremoti. Queste ricerche sono state finanziate da due progetti dell’Unione Europea denominati — USEMS e NOFEAR (Uncovering the Secrets of an Earthquake: Multidisciplinary Study of Physico-Chemical Processes During the Seismic Cycle e New Outlook on seismic faults: from earthquake nucleation to arrest)”, afferma Di Toro, responsabile di questi progetti.

“Questa ricerca”, conclude Elena Spagnuolo, ricercatrice dell’INGV, “tenta di svelare i possibili processi fisici che consentono a un terremoto di generare uno tsunami per sollevamento del fondale marino. In considerazione del fatto che questi sedimenti calcarei sono abbastanza comuni nelle fosse oceaniche e che, in base all’evidenza sperimentale, la loro presenza agevola la propagazione di una rottura sismica fino a rompere il fondale marino, si ritiene che questo fenomeno possa essere molto frequente”.

Il Laboratorio Alte Pressioni – Alte Temperature di Geofisica e Vulcanologia Sperimentali​ è collocato ​nella sede di Roma dell’INGV.​ ​Q​ui​ sono concentrate ​molte attività analitiche e sperimentali dell’INGV​ ​a supporto delle ricerche e del monitoraggio, ma anche ​svilupp​o ​di tecnologie e di nuove metodologie d’indagine​. ​Nel laboratorio si ​portano avanti ricerche​ di ​spicco dell’​​INGV​ in ambito sismologico, vulcanologico e ambient​ale​​, alcune delle quali finanziate nell’ambito di progetti europei​. Le attività sperimentali, svolte anche in collaborazione con laboratori di altri paesi, riguardano simulazioni e misure legate alla fisica delle rocce ​e dei terremoti, ​alle proprietà chimico-fisiche dei magmi,​ e​ ​la ​modellizzazione analogica dei processi vulcanici. ​Il laboratorio è anche​ ​un ​polo di attrazione per i ricercatori italiani e stranieri.

editoreusa
editoreusa
Tiziano Thomas Dossena, Direttore Editoriale della rivista.

Related Articles

- Advertisement -spot_img
- Advertisement -spot_img

L'angolo della poesia

- Advertisement -spot_img
- Advertisement -spot_img

Latest Articles